Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Our goal in this paper is to initiate the rigorous investigation of wave turbulence and derivation of wave kinetic equations (WKEs) for water waves models. This problem has received intense attention in recent years in the context of semilinear models, such as Schrödinger equations or multidimensional KdV‐type equations. However, our situation here is different since the water waves equations are quasilinear and solutions cannot be constructed by iteration of the Duhamel formula due to unavoidable derivative loss. This is the first of two papers in which we design a new strategy to address this issue. We investigate solutions of the gravity water waves system in two dimensions. In the irrotational case, this system can be reduced to an evolution equation on the one‐dimensional interface, which is a large torus of size . Our first main result is a deterministic energy inequality, which provides control of (possibly large) Sobolev norms of solutions for long times, under the condition that a certain ‐type norm is small. This energy inequality is of “quintic” type: if the norm is , then the increment of the high‐order energies is controlled for times of the order , consistent with the approximate quartic integrability of the system. In the second paper in this sequence, we will show how to use this energy estimate and a propagation of randomness argument to prove a probabilistic regularity result up to times of the order , in a suitable scaling regime relating and . For our second main result, we combine the quintic energy inequality with a bootstrap argument using a suitable ‐norm of Strichartz‐type to prove that deterministic solutions with Sobolev data of size are regular for times of the order . In particular, on the real line, solutions exist for times of order . This improves substantially on all the earlier extended lifespan results for 2D gravity water waves with small Sobolev data.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Nonlinear Landau Damping for the Vlasov–Poisson System in $$\mathbb {R}^3$$: The Poisson EquilibriumWe prove asymptotic stability of the Poisson homogeneous equilibrium among solu- tions of the Vlasov–Poisson system in the Euclidean space R3. More precisely, we show that small, smooth, and localized perturbations of the Poisson equilibrium lead to global solutions of the Vlasov–Poisson system, which scatter to linear solutions at a polynomial rate as t → ∞. The Euclidean problem we consider here differs signif- icantly from the classical work on Landau damping in the periodic setting, in several ways. Most importantly, the linearized problem cannot satisfy a “Penrose condition”. As a result, our system contains resonances (small divisors) and the electric field is a superposition of an electrostatic component and a larger oscillatory component, both with polynomially decaying rates.more » « less
-
Tobias Ekholm (Ed.)We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved.more » « less
-
Lu, Guozhen (Ed.)Abstract We discuss some of our work on averages along polynomial sequences in nilpotent groups of step 2. Our main results include boundedness of associated maximal functions and singular integrals operators, an almost everywhere pointwise convergence theorem for ergodic averages along polynomial sequences, and a nilpotent Waring theorem. Our proofs are based on analytical tools, such as a nilpotent Weyl inequality, and on complex almost-orthogonality arguments that are designed to replace Fourier transform tools, which are not available in the noncommutative nilpotent setting. In particular, we present what we call anilpotent circle methodthat allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.more » « less
-
Shatah, Jalal (Ed.)We prove asymptotic stability of point vortex solutions to the full Euler equation in two dimensions. More precisely, we show that a small, Gevrey smooth, and compactly supported perturbation of a point vortex leads to a global solution of the Euler equation in 2D, which converges weakly as $$t\to\infty$$ to a radial profile with respect to the vortex. The position of the point vortex, which is time dependent, stabilizes rapidly and becomes the center of the final, radial profile. The mechanism that leads to stabilization is mixing and inviscid damping. © 2021 Wiley Periodicals LLC.more » « less
An official website of the United States government
